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An analytic expression is used for the nonstationary temperature field of a 
limited circular cylinder with a shell to measure the thermal diffusivity by the 
method of the regular regime. The influence of a shell is taken into account by 
the first roots of the characteristic equations for an infinite sandwich plate 
and an infinite cylinder with a shell. 

One of the most widespread methods for measuring the thermophysical characteristics of 
substances is the method of the regular regime [i]. It is used primarily for a constant me- 
dium temperature and boundary condition of the first kind. Maintenance of the medium tem- 
perature constant is of no great difficulty, and the boundary condition of the first kind 
(~/I+~) permits avoidance of discussion on the foundation of determining the heat transfer 
coefficient ~ under nonstationary body cooling (heating) conditions in a fluid flow. Small 
size specimens must be used in performing the experiment. 

The boundary condition of the first kind (~/I+~) is realized easily for poorly conduct- 
ing specimens but is quite difficult for good heat conductors. If a specimen from a good 
conducting material is covered by a heat-insulating substance, then the boundary condition of 
the first kind is also realized simply. A shell is necessary in this case, for example, 
even when measuring the characteristics of friable and other amorphous materials, especially 
when investigating damp specimens. 

It should also be noted that measurement on specimens with a shell by the method of the 
regular regime is somewhat in the nature of universal. They can often by performed for 
boundary conditions of the first kind. For such measurements it is first necessary to find 
an analytic solution of the heat-conduction equation for a body with a shell. 

Temperature Field of a Cylinder with a Shell. Specimens of cylindrical shape are often 
used for experimental investigations. An analytic expression for the temperature field of a 
cylinder with a shell and its treatment is more complex than for the field of a corresponding 
parallelepiped. Consequently, we consider 
found for the system of equations with the 
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An analytic solution must be 
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Fig. 1 Fig. 2 

Fig. i. Dimensions of a cylinder with a shell: i) inner 
part of the cylinder; 2) shell. 

Fig. 2. Determination of the cooling rate m = (InAT~-- 
inATa) / (r ~--~ =) . 

In the cases 
form: 

~oOT~(x, R -b 5R, "O/Or + c~ IT~(x, R -> 6~, T) -- TJ :- 0. (12) 
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We obtain Ol([,N, Fon) by "intersection" (multiplication) of the solutions O~L($, FoL) for the 
infinite sandwich plate and OIR(~, Fon) for the infinite cylinder with a shell [2, 3]. The 
expression 02($o, ~l, FoR) is also the "intersection" of the corresponding O~L(~, FOL) and 
O2R(~, Fon). Therefore, the characteristic equations for the roots v and ~ have the form 

tg V< (~L - I) ~ + ~/</Bk 
K~tg~ = l ,  ( 1 5 ' )  

i ~ V< tg V< (,<L- i) 
Bi L 

K ~ t g v t g V < ( K  L - 1 ) v :  1 (BiL--+c~), (15) 

G1Jo (P) = l<~God~ (p) (Bi n ~ ~) .  (16) 

Method for Determining the Thermal Diffusivity. The temperature fields with Fourier 
values Fo R> Fo i are described in the regular regime by the expressions 

-- 2 -2 O 1 (~s ?], FOR) "~ AILAmK1L ([) F,t ~ (~) exp [-- (p~ § KaL~ 1) F%], (17) 
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TABLE i. Values of the Roots ~, w~ 

K R  j K e  

1 ,70 ] 2 ,00 2 ,40 

Ka = 4,0 
1,004 
1,008 
1,012 
1,018 

1,004 
1,008 
1,0t2 
1,018 

2,3724 
2,3406 
2,3094 
2,2639 

2,3564 
2,3092 

2,2635 
2,1975 

Ka : 9,0 

2,3667 
2,3295 
2,2931 
2,2403 

2,3480 
2,2922 
2,2398 
2,1639 

2,3592 
2,3148 
2,2716 
2,2094 

2,3358 
2,2714 
2,2088 
2,1207 

Then we can write 

02 (~, ~1, Fo R) ~ B~LB~Rf~L @) flR 01) exp [--  (p~ -k K~LV~) FOR1. (18) 
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2 2 = (~  + I<~,~), 

- -  - -  a~ ( l ~ [ /  R 2 - t -  ~ , [ /  L 2) = - -  m .  (19) 

The temperature difference AT = T~--T~ is measured at the times ~: and ~2 in test [i] and 
the cooling time m is thereby found by uszng Fig. 2, and by using the body shape factor 
K (=K~) an expression can be written to determine the thermal diffusivity 

a 1 = rnK = m (20) 

The shell influences the magnitude of the cooling rate m directly by means of its thermophy- 
sical and geometric characteristics. It implicitly affects the shape factor K in terms of 
the first roots of the characteristic equations (15) and (16) since they are functions of 

the following kind: 

vl=Vl(Ka, K~, KL), (21) 

~1--~ ~h(K~, K~, KR). (22) 

The roots w n of (15) and even of the more complex (15') can be evaluated by using a small 
electronic computer. Unfortunately, this is impossible with respect to the calculation of 
the roots Zl of (16). Hence, a table must be compiled of the roots Z1 for sufficiently large 
ranges of variation of the parameters in (22). Part of the table the authors obtained is 

presented as an example. 

Determination of the Thermal Diffusivity al. The effective method of calculation is 

exhibited in the following example: a clay specimen, moistness dry u = 6.2944%, density p: = 
2.123 kg/m ~ (measured by independent test), specific heat ci = 1.006 kJ/kg.K (from the 

literature), 2L = 94.71143 mm, 2R = 47.125 mm,* paraffin shell la = 0.2442 W/m.K, P2 = 910 
kg/m 3, c2 = 2.47* kJ/kg.K, 6L= 0.4026 and 0.64 mm, ~R =0.19625and0.32mm. m=18.775and 

16.952 h -I . 

Performing the calculations, we find K L = 1 + 6L/L = 1.0085, K R = 1.00416, K a = 910.2470 
ai/0.2442, K s = 1.9727~. Assuming al = 4.95'10 -7 m=/sec (a rough estimate for clay), we 

obtain K a = 4.5561, K s = 2.0284. 

By linear interpolation for K R = 1.004 and 1.008 for Ks = 2.00 and 2.40 and then by the 
' = 2.3590 (Table i, K a = 4.0). Performing the same interpolation between two K e we obtain ~ 

same interpolation in the table~_~_9.0, we obtain ~: = 2.3397. The numbers ~, Z',' must be 
interpolated in the ratio 4~ {4.5561 and /9, and then ~i = 2.3564. We find w~ = 1.51508 

from (15), and then from (20) 

*The geometric data are the statistical means, the paraffin characteristics are taken from the 

literature at ~25~ 
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K = 0,25 = 9 ,0704.10_5m~ 
(2.3564/0,047125# @ (1.51508/0,09471143) 2 

a~ == mK=5,21528.10-3.9.0704.10 ~ = 4 . 7 3 0 4 7 . 1 0  -7 m2/~c.  

This value is 4.5% less than that assumed. Hence, the calculation should be repeated. 
Repeating the calculation for G~ = 4.73047.10 -7, we obtain the second value G~ = 4.7045.10 -7 
Finally, the third time for G~ = 4.7045.10 -7 we have a'~ = 4.714"i0 -~ and finally G~ = 
(a[ + a'~)/2 = 4.709.10 -7 m~/sec, ~ = a~c~ = 1.006 W/m,K. 

In a test with a thicker shell (K L = 1.01351, K R = 1.0131358), a cooling rate of m = 
4.9375.10 -~ sec -~ was observed. Repetition of the calculation procedure yields ax = 
4.7983.10 -~ m~/sec (Zx = 1.0249 W/m.K), whose magnitude is 1.9% greater than the transition 
value. This indicates the good agreement between the experimental and theoretical results. 

NOTATION 

T, temperature; z, time; x, r, cylindrical coordinates; @:(T(x, r, ~)--Ty)/(T0--Tj); L, R. 6 , cylinder 
dimensions (Fig. i); ~L; ~l=r/R; FoR:a~/R2;FoL:a~TL2 ; a, thermal diffusivity; ~, heat conduc- 
tion; D, density; c, specific heat; ~, heat-transfer coefficient; K~=a~/a2; K == I k~)~c{k2p_c_,; BiL= 
C~LL/%2; BiR=:aRR.Z.~; KL--I~6L l ;  A ' R = I + 6 R . R ;  KRL:R.:L; &,, d~, t%, Y~ , Bessel_ f u n c t i o n s ; _  ~n ,  ~k ,  r o o t s  o f  
the characteristic equations (15) and (16) ; Go = ]0(~ I~-K--a)Y,~(~KR I Ka)--Jo(PK R I Kc)Y,,(,u I~) Ct 
Jz(.t~l A~,)Y (~K s~ K~,]--Jo(HK R l~//~DY~Qt|r~). Subscripts: i, main cylinder, first; 2, shell; L, 
axial, plate; R, radial, cylinder; 0, initial; f, fluid medium. 

2, 
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THEORETICAL AND EXPERIMENTAL I~ESTIGATION OF THE ABSORPTION 

COEFFICIENT OF DIFFERENT BLACKBODY MODELS 

S. B. Kiselev and O. Ao Kraev UDC 536.3 

Numerical computations are performed and results are presented of an experimental 
investigation of the effective absorption coefficient of radiant heat flows of 
cavities of complex configuration, 

The measurement of radiant energy by using thermal detectors--radiometers usually in- 
cludes two stages: absorption of radiant energy and its conversion into heat, and measure- 
ment of the quantity of absorbed heat. Blackbody models in the form of spherical, cylindrical, 
conical cavities, as well as more complex configurations are used as radiation absorbers in 
precision radiometers. The computations of the cavity absorption coefficients are fraught 
with serious technical difficulties and are executed principally for simple shapes [1-4]. 
Papers [5, 6] are also known in which an attempt is made to analyze absorbers of more complex 
configuration under definite simplifying &ssumptions. The lack of experimental work in this 
area does not permit an assessment of the legitimacy of the assumptions made and of the ac- 
curacy of the results obtained, In this paper we present the results of a complex investiga- 
tion in which the absorption coefficients of cavities of certain complex shapes used in prac- 
tice were determined by both computational and experimental means. 

The problem of theoretical computational determination of the absorption coefficient of 
combination cavities consisting of N different surfaces by using a generalized zonal method 
will reduce, in the long run, to solving a system of integral equations of the form [7] 
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